Interfacing 2D and 3D topological insulators: Bi(111) bilayer on Bi2Te3.

نویسندگان

  • Toru Hirahara
  • Gustav Bihlmayer
  • Yusuke Sakamoto
  • Manabu Yamada
  • Hidetoshi Miyazaki
  • Shin-ichi Kimura
  • Stefan Blügel
  • Shuji Hasegawa
چکیده

We report the formation of a bilayer Bi(111) ultrathin film, which is theoretically predicted to be in a two-dimensional quantum spin Hall state, on a Bi(2)Te(3) substrate. From angle-resolved photoemission spectroscopy measurements and ab initio calculations, the electronic structure of the system can be understood as an overlap of the band dispersions of bilayer Bi and Bi(2)Te(3). Our results show that the Dirac cone is actually robust against nonmagnetic perturbations and imply a unique situation where the topologically protected one- and two-dimensional edge states are coexisting at the surface.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Colloquium: Topological Insulators

Topological insulators are electronic materials that have a bulk band gap like an ordinary insulator but have protected conducted states on their edge or surface. These states are possible due to the combination of spinorbit interactions and time-reversal symmetry. The two-dimensional (2D) topological insulator is a quantum spin Hall insulator, which is a close cousin of the integer quantum Hal...

متن کامل

Creation of helical Dirac fermions by interfacing two gapped systems of ordinary fermions.

Topological insulators are a unique class of materials characterized by a Dirac cone state of helical Dirac fermions in the middle of a bulk gap. When the thickness of a three-dimensional topological insulator is reduced, however, the interaction between opposing surface states opens a gap that removes the helical Dirac cone, converting the material back to a normal system of ordinary fermions....

متن کامل

Topologically nontrivial bismuth(111) thin films

Using high-resolution angle-resolved photoemission spectroscopy (ARPES), the topological property of the three-dimensional Bi(111) films grown on the Bi2Te3(111) substrate were studied. Very different from the bulk Bi, we found another surface band near the point besides the two well-known surface bands on the 30 nm films. With this new surface band, the bulk valence band and the bulk conductio...

متن کامل

Robustness of topologically protected surface states in layering of Bi2Te3 thin films.

Bulk Bi2Te3 is known to be a topological insulator. We investigate surface states of Bi2Te3(111) thin films of one to six quintuple layers using density-functional theory including spin-orbit coupling. We construct a method to identify topologically protected surface states of thin film topological insulators. Applying this method to Bi2Te3 thin films, we find that the topological nature of the...

متن کامل

Enhanced thermoelectric performance in three-dimensional superlattice of topological insulator thin films

We show that certain three-dimensional (3D) superlattice nanostructure based on Bi2Te3 topological insulator thin films has better thermoelectric performance than two-dimensional (2D) thin films. The 3D superlattice shows a predicted peak value of ZT of approximately 6 for gapped surface states at room temperature and retains a high figure of merit ZT of approximately 2.5 for gapless surface st...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review letters

دوره 107 16  شماره 

صفحات  -

تاریخ انتشار 2011